Bifurcation of positive solutions to scalar reaction–diffusion equations with nonlinear boundary condition
نویسندگان
چکیده
منابع مشابه
Existence of triple positive solutions for boundary value problem of nonlinear fractional differential equations
This article is devoted to the study of existence and multiplicity of positive solutions to a class of nonlinear fractional order multi-point boundary value problems of the type−Dq0+u(t) = f(t, u(t)), 1 < q ≤ 2, 0 < t < 1,u(0) = 0, u(1) =m−2∑ i=1δiu(ηi),where Dq0+ represents standard Riemann-Liouville fractional derivative, δi, ηi ∈ (0, 1) withm−2∑i=1δiηi q−1 < 1, and f : [0, 1] × [0, ∞) → [0, ...
متن کاملExistence of positive solutions to a Laplace equation with nonlinear boundary condition
The positive solutions of a Laplace equation with a superlinear nonlinear boundary condition on a bounded domain are studied. For higher-dimensional domains, it is shown that non-constant positive solutions bifurcate from a branch of trivial solutions at a sequence of bifurcation points, and under additional conditions on nonlinearity, the existence of a non-constant positive solution for any s...
متن کاملexistence of triple positive solutions for boundary value problem of nonlinear fractional differential equations
this article is devoted to the study of existence and multiplicity of positive solutions to aclass of nonlinear fractional order multi-point boundary value problems of the type−dq0+u(t) = f(t, u(t)), 1 < q ≤ 2, 0 < t < 1,u(0) = 0, u(1) =m−2∑ i=1δiu(ηi),where dq0+ represents standard riemann-liouville fractional derivative, δi, ηi ∈ (0, 1) withm−2∑i=1δiηi q−1 < 1, and f : [0, 1] × [0, ∞) → [0, ∞...
متن کاملMultiple positive solutions to systems of nonlinear semipositone fractional differential equations with coupled boundary conditions
In this paper, we consider four-point coupled boundary value problem for systems of the nonlinear semipositone fractional differential equation
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Differential Equations
سال: 2018
ISSN: 0022-0396
DOI: 10.1016/j.jde.2017.09.014